2 resultados para protein function

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is an attempt to understand the role of GABA, GABAA and GABAB receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain GABAergic changes associated with normal and neoplastic cell growth in liver and to delineate its regulatory function. The investigation of mechanisms involving mitogenic models without cell necrosis may contribute our knowledge about both on cell growth, carcinogenesis, liver pathology and treatment. Objectives of the present study are, to induce controlled liver cell proliferation by partial hepatectomy and lead nitrate administration and uncontrolled cell proliferation by N-nitrosodiethylamine treatment in male Wistar rats, the changes in the content of GABA, GABAA,GABAB in various rat brain regions. To study the GABAA and GABAB receptor changes in brain stem, hypothalamus, cerebellum and cerebral cortex during the active cortex during the period of active DNA synthesis in liver of different experimental groups. The changes in GABAA and GABAB receptor function of the brain stem, hypothalamus and cerebellum play an important role sympathetic regulation of cell proliferation and neoplastic growth in liver. The decrease in GABA content in brain stem, hypothalamus and cerebellum during regeneration and neoplasia in liver. The time course of brain GABAergic changes was closely correlated with that of heptic DNA synthesis. The functional significance of these changes was further explored by studying the changes in GABAA and GABAB receptors in brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have established a fimctional correlation of serotonergic and adrenergic function in the brain regions with insulin secretion in diabetic rats (Vahabzadeh et al., 1995). Administration of 5-HT”. agonist 8-OH-DPAT to conscious rats caused an increase in blood glucose level. This increase in blood glucose is due to inhibition of insulin secretion by increased circulating EPI (Chaouloff et al., 1990a; Chaouloff et al., 1990d; Chaoulo1T& Jeanrenaud, 1987). The increase in EPI is brought about by increased sympathetic stimulation. This increase can lead to increased sympatho-medullary stimulation thereby inhibiting insulin release (Bauhelal & Mir, 1993, Bauhelal & Mir, 1990a; Chaouloffet al., 1990d). Also, studies have shown that Gi protein in the liver has been decreased in diabetes which will increase gluconeogenesis and glycogenolysis thereby causing hyperglycaemia (Pennington, 1987). Serotonergic control is suggested to exert different effects on insulin secretion according to the activation of different receptor subclasses (Pontiroli et al., 1975). In addition to this mechanism, the secretion of insulin is dependent on the turnover ratio of endogenous 5-hydroxy tryptophan (5-HTP) to 5-HT in the pancreatic islets (Jance er al., 1980). The reports so far stated does not explain the complete mechanism and the subclass of 5-HT receptors whose expression regulate insulin secretion in a diabetic state. Also, there is no report of a direct regulation of insulin secretion by 5-HT from the pancreatic islets even though there are reports stating that the pancreatic islets is a rich source of 5-HT (Bird et al., 1980). Therefore, in the present study the mechanism by which 5-HT and its receptors regulate insulin secretion from pancreatic [3-cells was investigated. Our results led to the following hypotheses by which 5-HT and its receptors regulate the insulin secretion.